15 Overlaying plots
data("swiss")
str(swiss)
fertility = swiss$Fertility
Draw Histogram
data("swiss")
str(swiss)
fertility = swiss$Fertility
h = hist(fertility,
probability = TRUE,
ylim = c(0, 0.04),
xlim = c(20, 110),
breaks = 11,
col = "#EFEFEF",
border = 0,
xlab = "Fertility",
main = "Swiss Fertility Data\n 1888")
#Draw normal distribution curve
curve(dnorm(x, mean = mean(fertility), sd = sd(fertility)), col = "darkred", lwd = 3, add = TRUE)
#Kernel Density Plot ... follows the average
lines(density(fertility), col = "blue")
lines(density(fertility, adjust = 3), col = "green")
#A rug representation (1-d plot) of the data to the plot.
rug(fertility, col = "red")
x = 1:10
y1 = runif(10)
y2 = runif(10)
plot(x, y1, col = "steelblue", pch = 19, xlab = "X", ylab = "", ylim = c(0, 1))
points(x, y2, col = "red", pch = 19)
lines(x, y1, col = "steelblue")
lines(x, y2, col = "red")
legend(8, 1.0, c("Y1", "Y2"), col = c("steelblue", "red"), lty = c(1, 1))
x = 1:10
y1 = runif(10)
y2 = runif(10)
par(mfrow = c(1, 2))
plot(x, y1, col = "steelblue", pch = 19)
lines(x, y1, col = "steelblue")
plot(x, y2, col = "red", pch = 19)
lines(x, y2, col = "red")
For practice:
Day price change percentage for SP 500 stocks. https://github.com/Einext/data/blob/master/SP500_stocks.csv
Sat Score. Data is available in psych package data(psych::sat.act)